If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+4x-1500=0
a = 1; b = 4; c = -1500;
Δ = b2-4ac
Δ = 42-4·1·(-1500)
Δ = 6016
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{6016}=\sqrt{64*94}=\sqrt{64}*\sqrt{94}=8\sqrt{94}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-8\sqrt{94}}{2*1}=\frac{-4-8\sqrt{94}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+8\sqrt{94}}{2*1}=\frac{-4+8\sqrt{94}}{2} $
| 5d+10=4d-4 | | .5x+.35x*70=34.5 | | (X-2)(x+2)=x-4 | | 11x^2-25x+15=0 | | .5x+.35x(70)=34.5 | | -4(x-3)=-16 | | 7x-(5x-8)=3x-4 | | 1x^2+25x-24=0 | | -2(2x-3)=3(x+1) | | 134=-9m-10 | | -6=-v+2 | | 57+2x=80+x | | -40=10(x+9) | | 3x-80=2x+10 | | 3(w+5)-7w=11 | | -35=-7(-9+k) | | 8x-200+x=4x-500-4x | | 9=k-7-5K | | 6x2=-121 | | -6-x+12x=10x+6= | | 15(6x2+7)=38(24x+3) | | 8-5p=-52 | | 2x/5+1/2=3x/10 | | 4-8x=-1+1-9x+8= | | y/y-3=2 | | 98=-7v+7 | | -5(x+4)=-2(2x1) | | 80+2x=50+x | | 4-8x=-1+1-9x8= | | y/2(2+2)=1 | | 7/x-4x/2x-3=-2 | | 3x4=12-x |